
Bulletin of Electrical Engineering and Informatics 

Vol. 9, No. 3, June 2020, pp. 1198~1207 

ISSN: 2302-9285, DOI: 10.11591/eei.v9i3.2032      1198 

  

Journal homepage: http://beei.org 

Basic principles of blind write protocol 
 

 

Khairul Anshar, Nanna Suryana, Noraswaliza 
Centre for Advanced Computing Technology, Faculty of Information and Communication Technology,  

Universiti Teknikal Malaysia Melaka, Malaysia 

 
 

Article Info  ABSTRACT 

Article history: 

Received Aug 31, 2019  
Revised Nov 4, 2019  

Accepted Feb 8, 2020 

 

 The current approach to handle interleaved write operation and preserve 
consistency in relational database system still relies on the locking protocol. 
If any entity is locked by any transaction, then it becomes temporary 
unavailable to other transaction until the lock is released. The temporary 
unavailability can be more often if the number of write operation increases as 
happens in the application systems that utilize IoT technology or smartphone 
devices to collect the data. To solve this problem, this research is proposed 
blind write protocol which does not lock the entity while the transaction is 

performing a write operation. This paper presents the basic principles  
of blind write protocol implementation in a relational database system. 

Keywords: 

Availability 

Blind write protocol 

Concurrency control 

Consistency 

Locking protocol This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Khairul Anshar,  

Centre for Advanced Computing Technology,  

Faculty of Information and Communication Technology, 

Universiti Teknikal Malaysia Melaka, 
Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia. 

Email: p031420004@student.utem.edu.my 

 
 

1. INTRODUCTION 

 Current implementation of concurrency control in Relational Database Management System 

(RDBMS) [1] handles the interleaved operations and temporary inconsistent at the database system level. 

Eswaran et al. described in [2], when someone is transferring money from one to another bank account,  

there will be a window that one bank account has been deducted but the other account not yet added because 

they are performed in one transaction that execute all the operations one by one. If this happens, then there 

should no other transaction access those 2 bank accounts to preserve the consistency. Therefore, Eswaran  

et al. proposed Locking Protocol (LP). This implementation is applied in the database system level. 

Stearns et al. proposed another approach that utilize a version of entity and certification process [3]. 

Each version of entity is unique, and it is used to identify the temporary inconsistent entity. In this approach, 
any transaction can access any entity including the one in the temporary inconsistent state (uncertified 

version) with the consequence that the transaction may be restarted by the concurrency control.  

Once the transaction can get the terminate request granted, the they become certified version otherwise it 

must be restarted. This implementation is also applied in the database system level. 

Kung et al. in [4] proposed an optimistic approach which is to utilize local copies to handle 

temporary inconsistent. In this approach, all reads, and writes will be performed in the local copies during  

the read phase. To make them available to other transaction globally then it requires the integrity validation 

before going to write phase. If the transaction fails while performing the integrity validation, then it must  

be restarted. This implementation is also applied in the database system level. The LP is proposed to  

https://creativecommons.org/licenses/by-sa/4.0/
mailto:p031420004@student.utem.edu.my


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Basic principles of blind write protocol (Khairul Anshar) 

1199 

achieve more on consistency. The last two approaches are proposed to achieve more on availability.  

These 3 concurrency controls above are handling the interleaved write operations at the system level. 

Therefore, an application does not have flexibility to determine in each write operation whether it needs to 

preserve consistency over availability or the opposite. 

The objective of the concurrency control is to increase the throughput of database by allowing more 

operations to be processed and interleaved as many as possible. Moreover, each operation in application has 

different consistency and availability requirement. The application system is developed to fulfill the business 

or process requirement which is transformed into read and write operation in the software lines of code. 

Therefore, the application system has the knowledge on the consistency and availability requirement of each 

operation. Some of the write operation depend on the current or other entity value, e.g. withdraw or deposit 
operation to the bank account. To perform these operations, the concurrency control should use locking 

protocol to achieve consistency and prevent the concurrency anomaly. But there is also a situation that  

the write operation does not depend on the current or other entity, e.g. any write operation which uses  

a constant or fix value. These operations are considered as blind write operation. 

Stearns et al. explained in [5], “blind writes is defined as a process to write on a particular entity 

without first issuing a read request on that entity.” Mendonca et al explained in [6], “during a blind write 

operation, copies are modified regardless of their previous values.” Burger et all explained in [7], “a blind 

write operation does not perform a read before the data item is written.” For this type of operation, the result 

depends on the last operation, know as the last performed wins. Hence, it does not need to perform locking 

protocol to the entity in order to improve the availability. 

This paper proposes blind write protocol (BWP) as a complement to the current concurrency control 
to be applied in the RDBMS. Our motivation is to give the application system a new option to deal with 

interleaved write operation. As a result, if the write operations are using constant or fix value then they can 

use blind write protocol which does not lock the entity. This approach can prevent unnecessary temporary 

unavailable situation and prevent unnecessary waiting. As a result, it increases the availability of entity.  

To understand more on the BWP, we start the discussion by reviewing the concurrency control in Section 2. 

Then, we describe about blind write protocol and its implementation in next section. We present the basic 

unit testing result in Section 4. The last section concludes the topic. 

 

 

2. CONCURRENCY CONTROL 

Serialization using locking protocol is achieved by making one or more transaction wait until  

the lock is released. The concurrency control will not abort any transaction until the deadlock or  
wait-lock-timeout occurs. Serialization using version control and local copy is achieved by restarting  

a transaction if it fails to get certified process or fails while performing the integrity validation. We do not 

find any discusion on the concurrency control that allowed data to be not consistent in order to achieve 

availability in RDBMS. The hierarchy chart of RDBMS concurrency control can be seen in Figure 1.  

Since it is a high level of hierarchy, then we do not add the granularity of lock as discussed in [8]. 

 

 

 
 

Figure 1. The K-Chart of RDBMS concurrency control 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 3, June 2020 :  1198 – 1207 

1200 

In Figure 1, there are two properties below the concurrency control. They are coming from the trade 

off between consistency and availability in partitioned system as discussed in CAP theory [9, 10]. Since all 

write operations in RDBMS are forced to achieve consistency, then there is no approach proposed for write 

operation to achieve the availability property and ignore the consistency. The consistency property can be 

achieved by forcing a transaction to wait or restarted, if conflict is raised. In the locking protocol approach, 

the conflict is raised when a transaction tries to access the locked entity. In the version control approach,  

the conflict is raised if it fails to get certified process. In the local copy approach, the conflict is raised if it 

fails in the integrity validation. The discussion on the consistency aims to prevent the concurrency control 
anomaly. Some of write operation depends on the current or other entity value, e.g. withdrawal or deposit 

operation to the bank account. To perform these operations, the concurrency control should prevent the lost 

update and write skew concurrency anomaly. 

 

2.1.  Lost update anomaly 

This anomaly happens when two transactions perform write operation to the same entity at same 

time. To describe it, let’s say there are two transactions, T1 and T2 are executed at the same time as shown at 

Listing 1. Both transactions are based on the initial state of e1=10. 

 

 
Seq. Initial balance amount, e1=10; 

 T1 T2 

1 

2 

3 

4 

begin 

e1  e1 + 10; 

commit; 

end; 

begin 

e1  e1 + 30; 

commit; 

end; 

 End result of balance amount is either e1=20 or e1=40 

 
Listing 1. Lost update anomaly 

 

 

In Listing 1, the operations are performed from the top to the bottom indicated by sequence number. 

We use  notation as assigning a value from the right, called new value, to the balance amount entity on  

the left, e1. In the absence of concurrency control, the end result of balance amount can either  

e1=20 or e1=40. This result is known as lost update anomaly. In order to preserve consistency then  

the RDBMS requires a concurrency control to handle these 2 interleaved deposit operations performed by 

two different transactions. The LP will make either T2 wait until T1 is completed or T1 wait until T2  

is completed. The end result of balance amount is consistent i.e. e1=50 regardless which transaction  

is processed at first. 
The LP works perfectly on the write operation which depend on the current or other entity value. 

When the entity is locked then it becomes temporary unavailable to other transaction. If other transactions 

want to access the entity, then they need to wait until the entity is available. The BWP is started with 

throwing basic question such as how if the new value is a constant or fix value as shown in Listing 2.  

Do we need to lock the entity? Eventhough the LP is applied, the end result still remains the same, i.e. either 

e1=20 or e1=30, known as Last Performed Wins (LPW). 

 

 
Seq. Initial balance amount, e1=10; 

 T1 T2 

1 

2 

3 

4 

begin 

e1  10; 

commit; 

end; 

Begin 

e1  20; 

commit; 

end; 

 End result of balance amount is either e1=20 or e1=30 

 

Listing 2. Blind write operation 

 
 

The answer for the question above depends on the application system requirement. If the situation  

is same as displayed in Listing 2, then it does not have any effect. The LP can only affect to a situation as 

displayed in Listing 3, i.e. a transaction has more than one blind write operations. With the LP, the end result 

has two possibilities only, i.e. either e1=20 and e2=200 or e1=30 and e2=300. With BWP, the end result has 

another 2 possibilities, i.e. e1=20 and e2=300 or e1=30 and e2=200. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Basic principles of blind write protocol (Khairul Anshar) 

1201 

Seq. Initial balance amount, e1=10; 

 T1 T2 

1 

2 

3 

4 

5 

begin 

e1  20; 

e2  200; 

commit; 

end; 

begin 

e1  30; 

e2  300; 

commit; 

end; 

 End result is either  

e1=30; and e2=300; or e1=20; and e2=200; or  

e1=20; and e2=300; or e1=30; and e2=200;  

 

Listing 3. Blind write operation with 2 operations 

 

 

As discussed above, if these four possibilities of end result are accepted by the application system, 

then it does not require to lock the entity. This can prevent unnecessary temporary unavailable situation  

and prevent unnecessary waiting. As a result, it preserves the availability of entity. Terry Doug explained  

in [11], "high availability is not sufficient for most application system, but strong consistency is not needed 

either." Vogels argued in [12], "there is a range of applications that can handle slightly stale data, and they  
are served well under this model. " In other hand, Bernstein argued in [13] that "the high availability increase 

the application complexity to handle inconsistent data." Therefore, the transaction should have another 

option in addition to preserve the consistency. If a transaction wants to preserve consistency, then LP can be 

used otherwise use BWP. 

 

2.2.  Write skew anomaly 

This anomaly happens if two transactions perform withdrawal operation to the same account 

number at same time. To describe it, let say two transactions, T1 and T2, are executed at the same time as 

shown at Listing 4. Both transactions are based on the initial balance amount, e1=100. The withdrawal 

operation has a condition to be fulfilled, i.e. the end result should be greater or equal to 0. Therefore, each 

transaction should apply a validation operation as shown in seq#3 in Listing 4. 

 
 

Seq. Initial balance amount, e1=100; 

 T1 T2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

begin 

tamount  60; 

if (e1 - tamount) >=0 

     e1  e1 - tAmount ; 

     commit; 

end if; 

end; 

begin 

tamount 80; 

if (e1 - tamount) >=0 

   

    

     e1  e1 - tamount; 

     commit; 

end if; 

end; 

 End result of balance amount can be e1=-40 

 

Listing 4. Write skew anomaly 

 

 

Since there is no LP applied, the result of T1 on seq#3 is 40, which is greater than 0, and the result  
of T2 is 20, which is greater than 0. Both transactions meet the specified condition for withdrawal operation, 

so it can continue to the next operation. When T1 is able to complete seq#4 and 5, then value of e1 on seq. no. 

6 is 100–60=40. After T2 perform seq#6 and 7, then it gives a negative balance amount, i.e. -40. 

If the LP is applied by using “lock for update”, then the operation on seq#3 of T2 will wait until T1 

completes seq# 5 in Listing 4. It can be seen in Listing 5. Since T1 is able to lock the e1 on the seq#3 then T2 

should wait until T1 performs commit to release e1 or preempt. Once the lock on e1 is released, then T2 can 

perform lock for update on e1 as shown on seq#7 in Listing 5. Now, the value of eforupdate on the seq# 6 is 

40 instead of 100. When the T2 perform seq#8 then it does not meet with the specified condition. As a result, 

the T2 will not performs seq#9 and 10. Therefore, the end result of balance amount will remain the same,  

i.e. e1=40. 

BWP does not lock any entity when write operation is executed to allow more transaction to be 

interleaved. This forces the application system has to apply its own approach to preserve the consistency.  
By utilizing the transaction history as discussed on [14-16], BWP can preserve the consistency for both  

the withdrawal and deposit operation shown on Table 1. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 3, June 2020 :  1198 – 1207 

1202 

Seq. Initial balance amount, e1=100; 

 T1 T2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

begin 

tamount  60; 

eforUpdate   lock(e1) 

if (eforUpdate - tamount) >=0  

     e1  e1 - tAmount ; 

     commit; 

end if; 

end; 

begin 

tamount 80; 

 

 

 

eforUpdate   lock(e1) 

if (e1 - tamount) >=0 

     e1  e1 - tamount; 

     commit; 

end if; 

end; 

 End result of balance amount is e1=40 

 

Listing 5. Lock for update 
 

 

Table 1. Transaction history table 
History# Previous Balance Trasaction Amount Balance Amount Trasaction Status 

1 0 1000 1000 Approved 

2 1000 -100 900 Approved 

3 900 -200 700 Approved 

4 700 -800 700 Rejected 

5  200  In Process 

6  -500  In Process 

7  -300  In Process 

8  -200  In Process 

 

 

The first transaction in Table 1 is deposit with amount 1000. The transaction amount, which is less 

than 0, it indicates that the type of transaction is withdrawal. The transaction status become rejected  

if the account does not have enough balance to perform withdrawal operation and the balance amount 

remains the same with the previous balance. In the LP, the serialization is achieved by locking the entity.  

In BWP, it is achieved by generating the database sequence value for each transaction. 
 

2.3.  Isolation level 

The discussion in [14] focuses on allowing more operations to be interleaved because of strict  

2-phase-locking protocol, all locking is released after the transaction perform commit or rollback. Streans et 

al in [5] argue that since the new value of T1 has not been committed yet, then it is natural choice to make  

the T2 wait until T1 is committed. However, Streans explained further, since the database system also has  
the initial value before any other transaction commit their changes, then giving the initial value to T2 can 

improve the concurrency. The uncommitted read, committed read and snapshot isolation level are proposed 

to improve the concurrency and known as isolation level.Uncommitted read allows the read operation to get 

uncommitted entity value. But RDBMS may become inconsistent if the uncommitted transaction is rollback. 

Committed read allows the read operation to get committed entity value only. But two read committed 

operations to the same entity in one transaction may return different value. It is due to in between two 

operations there could be a write operation by other transaction. It is known as non-repeatable read anomaly. 

Read lock, and snapshot isolation guarantee the two read operations in one transaction get same 

entity value. Read lock to locked entity should wait until the lock is released by other transaction or preempt. 

Snapshot isolation is proposed to avoid read lock [17]. Snapshot isolation reads the entity value from the log, 

but it still relies on the locking protocol to prevent write skew [18].The latest discussion on the concurrency 

control is trying to make the snapshot isolation is able to prevent write skew concurrency anomaly and makes 
the interleaved transactions become serializable [19-21]. The discussion on making the interleaved 

transactions in the read committed isolation become serializable is started in [22]. Their approaches  

are similar with [3] and [4], i.e. the system has to abort or restart one of the interleaved transactions if conflict 

pattern called dangerous structure appears [23, 24]. Another discussion tries to improve the throughput by 

staged allocation and deallocation of locks in bulk [25]. 

 

 

3. BLIND WRITE PROTOCOL 

In this section, we are describing the definition and the basic principles of blind write protocol.  

The interaction between client end point with RDBMS is known as transaction. This interaction consists  



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Basic principles of blind write protocol (Khairul Anshar) 

1203 

of one or more operations. The operation can be read or write. Write operation is a process to create new 

entity, modify or delete any existing entity. Read operation is a process to get entity value. 

 

3.1.  Definition 

Let’s define database system as D which consists of n number of entity. 

 

D={e1, e2, e3, ..., en} 

 

These entities can be either tables, rows, or columns. The BWP is focusing on the Data 

Manipulation Language (DML), which create, modify or delete a row into, in, or from a table. The Data 
Definition Language (DDL) is not part of BWP discussion. We also consider that modifying a current value 

of one column as modifying a row. Therefore, the write operation is action to assign a value to the entity. 

Create operation is considered as assigning any value, v, to new entity, en+1, 

 

en+1 v; where v is not NULL. 

 

Delete operation is considered as assigning NULL to existing entity, ei, 

 

ei NULL; where 1 < i < n. 

 

Update operation is considered as assigning a value, v, to existing entity, ei, 
 

ei v; where v is not NULL and 1 < i < n. 

 

The value of v above can be defined as: 

 Function of any entity, known as normal write operation. 

 Constant or fixed value, e.g. ‘APPROVED’, ‘536980 MALAYSIA’, ‘+6012345678’, 20, etc. It is known 

as blind write operation. 

 

3.2.  Data manipulation language 

We propose a set of DML statements to distinguish the blind write protocol with the normal write 

protocol, as a follow: 

 Create Operation:  
BLIND INSERT INTO table_name (list_of_columns) VALUES (list_of_values) 

 Delete Operation: 

BLIND UPDATE table_name SET column_name=value [, column_name=value] [WHERE 

condition] 

 Update Operation: 

BLIND DELETE FROM table_name [WHERE condition] 

 

As per blind write protocol definition, the value on the proposed statements above should be a fixed 

value. It should not use a function from other or its own entity. But in the implementation, it may have no 

validation, either the value is fixed or a function of any entity. Since the application systems know what  

the detail requirement is, then it becomes their responsibility either they want to use normal or blind write 
operation. Since the implementation allows to use such function then the blind write protocol may experience 

any concurrency anomaly. Therefore, the blind write protocol is not intended to replace the existing 

concurrency control that can prevent concurrency anomaly. The blind write protocol is proposed to give more 

option to the application to allow more operation to be interleaved with the consequence that preserving 

consistency becomes application system responsibility. 

 

3.3.  Basic principles 

The objective of blind write protocol is to allow more transactions to be processed then it should 

make the entity to be highly available. There are some basic principles that must be applied into RDBMS to 

deliver high availability. The basic principles are as follows: 

 The transaction should not lock the entity. It is required in order to achieve the main objective, i.e.  
to prevent unnecessary temporary unavailable situation and prevent unnecessary waiting. As a result,  

it increases the availability of entity. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 3, June 2020 :  1198 – 1207 

1204 

 The transaction should apply autonomous auto-commit for every blind write operation execution.  

It is required to prevent the dirty read anomaly due to the blind write operation does not lock entity.  

So that, the effect of blind write operation can be accessed by other transaction. 

 If the blind write operation need to access the locked entity, then the blind write operation still has to 

wait until it is released. It is required in order to preserve the consistency. 

The autonomous auto-commit should persistently store the effect of the blind write operation only 

and it should not store any previous normal write operation effect that have not been committed yet. 

Example, there is a transaction with three operations with the first operation is normal write, the second  
is blind write operation and the third operation is rollback. The rollback should apply to the first operation 

only which is normal write operation. The result of second operation, which is blind write operation, should 

be committed persistently into the disk even the following operation is rollback. The algorithm for invoking 

autonomous auto-commit for blind write operation is shown in Figure 2. 

 

 

 
 

Figure 2. Autonomous auto-commit algorithm 

 

 

4. RESEARCH METHOD AND UNIT TESTING 

In this research we use a prototype system as proof of concept (POC) system to perform necessary 

unit test. It is performed to validate the blind write protocol basic principles. We have successfully 

implemented the blind write protocol into the Apache Derby Database as POC system as discussed in [16]. 

We use 3 unit-test plans to observe and verify the blind write protocol basic principles implementation.  

We present the testing result in this Section. 

 

4.1.  No-locking unit test and result 

To verify the basic principle number one, we create two connections. The first connection is used to 

perform blind insert and the second one is used to perform select statement. We also disable the apache  

auto-commit, to make sure that there is no commit operation performed by any connection. The result of this 

testing can be seen on Figure 3. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Basic principles of blind write protocol (Khairul Anshar) 

1205 

Since the select operation is using different transaction with the blind insert operation,  

then the select operation should wait if the locking protocol is applied until the first connection performs 

commit or rollback operation. But in Figure 3, we can see that the select operation is able to get the result  

of the blind insert operation which is using different connection with the select operation. It shows us that  

the blind write protocol did not lock any entity while performing blind insert operation. 
 

 

 
 

Figure 3. No-locking unit testing result 

 

 

4.2.  Autonomous auto-commit unit test and result 

In the previous testing, we did not lock any entity while performing blind insert operation. It means, 

other transaction can access the effect of blind write operation immediately. To prevent the dirty read 

anomaly, as discussed in Section 3, blind write protocol should apply autonomous auto-commit for every 

blind write operation execution. Moreover, this commit should apply into a blind write operation only. 

Therefore, we should use only one connection to test the Autonomous Auto-Commit unit testing. 

In this testing, we perform normal insert before blind insert operation. After both insert operations 

are performed, then we perform select statement operation to check the number of record before we perform 

rollback and it returns two records as expected as shown in Figure 4. Once the rollback is performed, then we 

perform a select statement operation again and it returns one record only as expected as shown in Figure 4.  
It means the blind write operation was successfully committed autonomously and the rollback is performed 

to the normal write operation effect only. 
 

 

 
 

Figure 4. Autonomous auto-commit unit testing result 

 

 

4.3.  Blind write operation on the locked entity unit test and result 

The blind write protocol is proposed as a complement to the current concurrency control. There will 

be a situation that the blind write operation needs to access the entity that has been locked by other 
transaction. Even though, the blind write protocol does not lock entity, but it still should wait if the blind 

write operation wants to access the locked entity. Therefore, we perform this testing to verify this situation. 

In this testing, we use three connections. The first connection is used to insert a record using locking 

operation and then perform commit operation. The second connection is used to update the same record using 

locking operation without performing commit operation. The third connection is used to update the same 

record using blind update operation. The result of this testing can be seen on Figure 5. On the Figure 5,  

we can see that the blind write operation is not able to access the locked entity. As a result, the RDBMS 

throws an error operation after the blind write operation is waiting for more than the lock wait timeout.  



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 3, June 2020 :  1198 – 1207 

1206 

Even though on the basic principle number one, we state that the blind write operation should not lock entity.  

The lock that we described here is an exclusive lock or lock for update. The blind write protocol still need to 

perform read or sharing lock on the entity in order to check whether the entity is free or in exclusive locked 

or lock for update. 
 

 

 
 

Figure 5. Blind write operation on the locked entity unit testing result 

 

 

5. CONCLUSION 

In this paper, we proposed the BWP with its basic principles and DML statement. The basic 

principles as follows: the transaction should not lock the entity, the transaction should apply autonomous 

auto-commit for every blind write operation execution, the transaction should wait or preempt if it wants to 

perform write operation on the locked entity by other transaction. 

The lock that we referred here is an exclusive lock or lock for update. The BWP should not apply an 

exclusive lock or lock for update to the entity in order to prevent unnecessary temporary unavailable situation 

and prevent unnecessary waiting. As a result, it increases the availability of entity. If the blind write operation 

needs to access the locked entity by other transaction, then the blind write operation still has to wait until it is 
released. Therefore, the blind write protocol still requires applying read or sharing lock which will not make 

the entity becomes temporary unavailable. The autonomous auto-commit that we described here that it 

should only store the effect of the blind write operation persistently. Hence, any previous normal write 

operation effect still can be rolled-back. 

 

 

REFERENCES 
[1] E. F. Codd, "A Relational Model of Data for Large Shared Data Banks," Commun. ACM, pp. 377-387, 1970. 
[2] K. P. Eswaran, et al., "The Notions of Consistency and Predicate Lock in a Database System," ACM Comput. 

Surv., vol. 19, no. 11. pp. 624-633, 1976. 
[3] R. E. Stearns, et al., "Concurrency control for database systems," 7th Symp. Foundations of Computer Science,  

pp. 19-32, 1976. 
[4] H. T. Kung and J. T. Androbinson, "An Optimistic Methods for Concurrency Control," ACM Transactions on 

Database Systems, vol. 6, no. 2, pp. 213-226, 1981. 
[5] R. E. Stearns and D. J. Rosenkrantz, "Distributed Database Concurrency Controls using Before-values," 

Proceedings of the 1981 ACM SIGMOD International Conference on Management of Data, pp. 74-83, 1981. 
[6] N. das Chagas Mendonca and R. de Oliveira Anido, "Using Extended Hierarchical Quorum Consensus to Control 

Replicated Data: from Traditional Voting to Logical Structures," Proceedings of the Twenty-Seventh Hawaii 
International Conference on System Sciences, vol. 27. pp. 303–312, 1994. 

[7] A. Burger, V. Kumar, and M. L. Hines., "Performance of Multiversion and Distributed Two-Phase Locking 
Concurrency Control Mechanisms in Distributed Databases," Inf. Sci., vol. 96, no. 1-2, pp. 129-152, 1997. 

[8] J. Gray, et al., "Granularity of Locks and Degrees of Consistency in a Shared Data Base," IFIP Working 
Conference on Modelling in Data Base Management Systems, pp. 365–394, 1976. 

[9] S. Gilbert and N. Lynch, "Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web 
Services," ACM SIGACT News, vol. 33, no. 2, pp. 51-59, 2002. 

[10] S. Gilbert and N. Lynch, "Perspectives on the CAP Theorem," Computer, vol. 45, no. 2, pp. 30-36, 2012. 
[11] D. Terry, "Replicated Data Consistency Explained Through Baseball," Commun. ACM 56, vol. 12, pp. 82-89, 2013. 
[12] W. Vogels, "Eventually Consistent," Commun. ACM 52, vol. 52. no. 1, pp. 40-44, 2009. 
[13] P. A. Bernstein and S. Das, "Rethinking Eventual Consistency," Proceedings of the 2013 ACM SIGMOD 

International Conference on Management of Data, pp. 923-928, 2013. 
[14] K. Anshar, N. Suryana, and N. B. Abdullah, "Blind Write Protocol," International Conference on Intelligent 

Systems Design and Applications,” pp. 868-879, 2017. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Basic principles of blind write protocol (Khairul Anshar) 

1207 

[15] K. Anshar, N. Suryana, and N. B. Abdullah, "Blind Write Protocol Implementation in Apache Derby Database," 
Journal of Information Assurance and Security, vol. 13, no. 1, pp. 48-55, 2018. 

[16] K. Anshar, N. Suryana, and N. B. Abdullah, "The Potential Application of Blind Write Protocol," International 
Journal of Computer Information Systems and Industrial Management Applications, vol. 10, pp. 219-226, 2018. 

[17] H. Berenson, et al., "Critique of ANSI SQL Isolation Levels," ACM Record, vol. 24, no. 2. pp. 1-10, 1995. 
[18] B. Kemme and G. Alonso, "A New Approach to Developing and Implementing Eager Database Replication 

Protocols," ACM Trans. Database Syst, vol. 25, no. 3, pp. 333–379, 2000. 
[19] M. Alomari, A. Fekete, and U. Rohm, "A Robust Technique to Ensure Serializable Executions with Snapshot 

Isolation DBMS," IEEE 25th International Conference on Data Engineering, pp. 341-352, 2009. 
[20] M. J. Cahill, U. Rohm, and A. Fekete, "Serializable Isolation for Snapshot Databases,” ACM Transactions on 

Database System, vol. 34, no. 4, pp. 1-42, 2009. 
[21] X. Zhou, et al., "Posterior Snapshot Isolation," IEEE 33rd International Conference on Data Engineering,  

pp. 797-808, 2017. 
[22] M. Alomari and A. Fekete, "Serializable Use of Read Committed Isolation Level," IEEE/ACS 12th International 

Conference of Computer Systems and Applications, pp. 1-8, 2015. 
[23] F. Zendaoui and W. K. Hidouci, "Performance Evaluation of Serializable Snapshot Isolation in PostgreSQL," 12th 

International Symposium on Programming and Systems, pp. 1-11, 2015. 
[24] Y. Yuan, et al., "BCC: Reducing False Abort in Optimistic Concurrency Control with Low Cost for in-Memory 

Databases," Proc. VLDB Endow., vol. 9, no. 6, pp. 504-515, 2016. 
[25] J. Hyungsoo, et al., "A scalable Lock Manager for Multicores," ACM Transaction on Database System,  

vol. 39, no. 4, pp. 1-29, 2014.  
 
 

BIOGRAPHIES OF AUTHORS 

 

 

Khairul Anshar was born in Garut, West Java, Indonesia on 20 January 1980. He obtained his 
degree in Physics on from Bandung Institute of Technology, Indonesia. He obtained his Master 
of Science (MSc) in Information and Communication Technology by research from Faculty  
of Information and Communication Technology (FTMK), Universiti Teknikal Malaysia Melaka, 
Malaysia on 2013.sg.linkedin.com/in/khairulanshar. 

  

 

Prof. Gs. Ts. Dr. Nanna Suryana Herman currently works as a full Professor in Advanced 
Databases at the Faculty of Information and Communication Technology (FTMK) UTeM.  
At the same time, he holds the position being the Project Leader for UTeM-Indonesia PhD 
Program (UIPP). He obtained his degree in Soil and Water Engineering, UNPAD Bandung 
Indonesia. He obtained his Master of Science (MSc) in Computer Assisted Regional Planning at 
the International Institute for Geoinformatics and Earth Observation (ITC), Enschede,  

The Netherlands. In year 1996, he obtained his Doctorate Degree from the Department  
of Remote Sensing and GIS, Research University of Wageningen, the Netherlnads. He currently 
supervises Master and Doctorate students who are undertaking research in system 
interoperability, mobile computing, handing and managing large (spatial) data, 3D imaging and 
image processing and image analysis as well as indoor navigation. He published numbers  
of International Journals, book chapters. He is actively involved in Editorial Board  
of International Journals, member of ASEA UNINET, EURAS, member of AACHA,  
Royal Academic Singapore, MBOT and IGRSM. 

  

 

Dr. Noraswaliza Abdullahhird is a senior lecturer in the Department of Software Engineering, 

teaching programming and database subjects. She is also a member of the faculty's 
Computational Intelligence Technology Research Group. Her research interests include data 
mining, recommender system, and database technology. She received her honors degree in 
Management Information System from Universiti Sains Malaysia, her master’s degree in 
Management Information System from Universiti Putra Malaysia and her PhD in Recommender 
System area from Queensland University of Technology, Australia. Her PhD work includes 
exploring user generated contents from the Internet to extract knowledge for recommendation by 
applying data mining techniques and developing a novel hybrid recommender technique for 

recommending infrequently purchased products. 

 


